MMPA STANDARD No. 0100-00 STANDARD SPECIFICATIONS FOR PERMANENT MAGNET MATERIALS

TYPICAL MAGNETIC PROPERTIES AND CHEMICAL COMPOSITIONS

	Original MMPA Class	IEC Code Reference	Chemical Composition*					Magnetic Properties							
MMPA Brief Designation			Al	Ni	Со	Cu	Ti	Max. Energy Product (BH) _{max}		Residual Induction B _r		Coercive Force H _c		Intrinsic Coercive Force H _{ci}	
								(MGOe)	(kJ/m³)	(gauss)	(mT)	(oersteds)	(kA/m)	(oersteds)	(kA/m)
ISOTROPI	IC CAST AL	.NICO													
1.7/0.58	Alnico 2	R1-0-4	10	19	13	3	-	1.7	13.5	7500	750	560	45	580	46
1.35/0.50	Alnico 3	R1-0-2	12	25	-	3	-	1.35	10.7	7000	700	480	38	500	40
ANISOTRO	OPIC CAST	ALNICO													
5.5/0.64	Alnico 5	R1-1-1	8	14	24	3	-	5.5	43.8	12800	1280	640	51	640	51
CERAMIC	MAGNET														
3.5/3.1	Ceramic 8	SI-1-5	MO • 6Fe ₂ O ₃					3.5	27.8	3850	385	2950	235	3050	245
RARE EA	RTH MAGN	ETS - NEOD	YMIUN	1											
40/15	R5-1	RE ₂ TM ₁₄ B	Nd ₂ Fe ₁₄ B					40	320	12800	1280	12000	950	15000	1190

Maximum Energy Product: BHmax

The point on the Demagnetization Curve where the product of B and H is a maximum and the required volume of magnet material required to project a given energy into its surroundings is a minimum.

Residual Induction: Br (a.k.a residual flux density; residual magnetic induction; residual magnetism)

The magnetic flux density at which the magnetizing force is zero when the material is in a symmetrically and cyclically magnetized condition.

Coercive Force: Hcb

The magnetic field H which must be applied to a magnetic material in a symmetrical, cyclicly magnetized fashion, to make the magnetic induction B vanish.

Intrinsic Coercive Force: Hcj

A measure of the material inherent ability to resist demagnetization.

A magnet material whose magnetic properties are the same in any direction, and which can therefore be magnetized in any direction without loss of magnetic characteristics.

Anisotropic: (a.k.a Magnetically Oriented)

The material has a predefined direction of magnetic orientation